Forest complexity modelling and mapping with remote sensing and topographic data: a comparison of three methods
نویسندگان
چکیده
The concept of forest complexity has been recently adopted to represent the multiple horizontal and vertical forest structure and composition attributes that support ecological functions in a single measure or index. The index variables are often selected based on known associations with types of habitat and biodiversity potential. In modelling and mapping of forest complexity using geospatial data, three multivariate methods have been evaluated in previous studies: (i) defining an additive complexity index by manual a priori selection and combination of a set of field variables followed by regression-based modelling of the index against geospatial data; (ii) as the previous method, but where a complexity index is defined a priori using principal components analysis (PCA) of the field data; and (iii) direct modelling of a set of field variables against a set of geospatial variables using techniques such as redundancy analysis (RDA). The objective of this study was to compare these methods through an assessment of model quality and their relative merits and limitations in implementation. In the rural municipality of Chelsea, Quebec, 70 field plots were established, and 24 forest structure and composition variables were measured that had between-variable correlations of less than 0.8. Spectral and spatial Quickbird imagery information and topographic data were used to derive complexity models using the three methods. The manual additive index and the RDA-derived index had similar validation errors relative to their index means (24.3% and 22.3%, respectively). However, the RDA index was based on the full set of 24 field variables, which had a total structurecomposition variance greater than the manual additive index comprised of a subset of 10 of those variables. Thus, the RDA index was deemed to more comprehensively represent forest structure and composition than the additive index. RDA also produced outputs that were richer in information content, showing associations between individual variables and plots, as well as forest environmental gradients. The PCA method was useful for evaluating environmental gradients in the field data, but dimensionality was too high to provide a single useful complexity index for modelling with geospatial data. The additive and RDA index models were used to produce maps of predicted forest complexity to aid in biodiversity survey planning and habitat conservation efforts within the municipality. Résumé. Le concept de complexité de la forêt a été adopté récemment pour représenter la structure horizontale et verticale multiple de la forêt et les attributs de la composition qui supportent les fonctions écologiques dans une mesure ou un indice unique. Les variables de l’indice sont souvent sélectionnées sur la base d’associations connues avec les types d’habitats et le potentiel de biodiversité. Dans la modélisation et la cartographie de la complexité forestière utilisant des données géospatiales, trois méthodes multivariées ont été évaluées dans des études antérieures : (i) en définissant un indice additif de complexité par la sélection manuelle a priori et la combinaison d’un ensemble de variables de terrain, suivi de la modélisation basée sur une régression de l’indice par rapport aux données géospatiales, (ii) comme ci-dessus, mais où un indice de complexité est défini a priori en utilisant une analyse en composantes principales (ACP) des données de terrain et (iii) la modélisation directe d’un ensemble de variables de terrain par rapport à un ensemble de variables géospatiales en utilisant des techniques comme l’analyse de redondance. L’objectif de cette étude était de comparer ces trois méthodes par le biais d’une évaluation de la qualité des modèles et de leur potentiel et limites dans leur implémentation. Dans la municipalité rurale de Chelsea, au Québec, 70 parcelles ont été établies et 24 variables de la structure et de la composition de la forêt qui affichaient des corrélations inter-variables de moins de 0,8 ont été mesurées. L’information spectrale et spatiale dérivée des images de Quickbird ainsi que des données topographiques ont été utilisées pour dériver des modèles de complexité à l’aide des trois méthodes. L’indice additif manuel et l’indice dérivé de l’analyse de redondance montraient des erreurs de validation similaires par rapport à leur indice (respectivement de 24,3 % et de 22,3 %). Cependant, l’indice dérivé de l’analyse de redondance était basé sur l’ensemble complet des 24 variables de terrain, qui avait une variance totale structure-composition supérieure à celle de l’indice additif manuel composé d’un ensemble de 10 de ces variables. Ainsi, l’indice dérivé de l’analyse de redondance a été jugé comme représentant de façon plus détaillée la structure et la composition de la forêt par rapport à l’indice additif. L’indice dérivé de l’analyse de redondance a aussi donné des Received 3 March 2011. Accepted 18 November 2011. Published on the Web at http://pubs.casi.ca/journal/cjrs on 22 February 2012. Valerie Torontow, and Douglas King. Geography and Environmental Studies, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6. Corresponding author (e-mail: [email protected]). Can. J. Remote Sensing, Vol. 37, No. 4, pp. 387 402, 2011 # 2012 CASI 387 C an ad ia n Jo ur na l o f R em ot e Se ns in g D ow nl oa de d fr om p ub s. ca si .c a by C A R L E T O N U N IV o n 03 /1 9/ 12 Fo r pe rs on al u se o nl y. résultats plus riches en contenu d’information, mettant en relief des associations entre des variables et des parcelles individuelles de même que des gradients forestiers et environnementaux. La méthode ACP était utile pour évaluer les gradients environnementaux dans les données de terrain, mais la dimensionnalité était trop grande pour fournir un indice de complexité unique utile pour la modélisation avec des données géospatiales. Le modèle d’indice additif et le modèle dérivé de l’analyse de redondance ont été utilisés pour produire des cartes de complexité prédite de la forêt en soutien à la planification des relevés de la biodiversité et aux efforts de conservation des habitats dans la municipalité. [Traduit par la Rédaction]
منابع مشابه
Integration of Remote Sensing and the GIS-based Methods for Provision of Cadastral Mapping of Agricultural Areas of Ardakan City
In the fifth development plan establishment, establishment of the Cadastre System of agriculture nationwide has been defined to be the work priority of institutions and organizations responsible in the area of agriculture and equity issuance in the country. In this study, the possibility of provision of the Cadastral mapping of agriculture by a integration of the data of the remote sensing and ...
متن کاملIntegration of Remote Sensing and the GIS-based Methods for Provision of Cadastral Mapping of Agricultural Areas of Ardakan City
In the fifth development plan establishment, establishment of the Cadastre System of agriculture nationwide has been defined to be the work priority of institutions and organizations responsible in the area of agriculture and equity issuance in the country. In this study, the possibility of provision of the Cadastral mapping of agriculture by a integration of the data of the remote sensing and ...
متن کاملForest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data
Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...
متن کاملApplication of remote sensing and geographical information system in mapping land cover of the national park
The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...
متن کامل3D Modelling of Under Ground Burried Objects Based on Ground Penetration Radar
There is a growing demand for mapping and 3D modelling of buried objects such as pipelines, agricultural hetitage, landmines and other buried objects. Usually, large scale and high resolution maps from these objects are needed. Manually map generation and modeling of these objects are cost and time consuming and is dependent on lots of resources. Therefore, automating the subsurface mapping and...
متن کاملEnvironmental sensitivity of flash flood hazard using geospatial techniques
Flash flood has been increasing in the Khartoum area, Sudan due to geographical conditions and climatic change as heavy rainfall and high temperature, therefore the present work tried to estimate the sensitivity of flash flood. The present work proposes an advanced technique of flood sensitivity mapping using the method of analytical hierarchy process. Ten factors as elevation, slope, distance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012